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Introduction

Carcinoma of the breast is second only to lung cancer as a tumor-related cause of death
in women. There are now more than 180,000 new cases and 45,000 deaths annually in the
United States alone [1]. It begins as a focal curable disease, but it is usually not identifiable
by palpation at this stage, and mammography remains the mainstay in effective screening.
It has been estimated that the mortality from breast carcinoma could be decreased by as
much as one-third if all women in the appropriate age groups were regularly screened.

Although there is currently considerable debate as to exactly at what age and how
frequently to perform film-screen mammography, there is no doubt that large numbers of
patients ideally do need to be evaluated by mammography at regular intervals. Conventional
screening mammography generally includes, at a minimum, two views of each breast. The
films have traditionally been evaluated to search for findings which would differentiate
those considered normal from those showing abnormalities. Although the criteria for
malignancy are reasonably well established, the application of such criteria is often quite
subjective, and proper evaluation is a time consuming task for the radiologist, usually
requiring a review of current and prior films (if available) by magnifying glass to search for
the subtle microcalcifications that are so frequently an indicator of occult malignancy.

Computer technology offers many potential benefits to the radiologist. There is
currently considerable intra- and inter-observer disagreement or inconsistencies in
mammographic interpretation. This has led to an interest in the possibility of utilizing
computerized pattern recognition algorithms, such as artificial neural networks, to assist in
the decision-making required in the assessment of mammograms. Artificial neural networks
have been demonstrated to be useful in many engineering pattern recognition applications
and these techniques hold promise for improving the accuracy of determining those patients
where further assessment and possible biopsy is indicated. Furthermore, there should also
be an eventual cost savings when a reliable automated screening system can be developed.
The successful development of a neural network that is capable of reliably assessing the
potential for the existence of breast carcinoma based on radiographic features of
mammograms would make the radiologist both more efficient and more effective.

Artificial Neural Networks for Pattern Recognition

Artificial neural networks (or simply neural networks) are computer algorithms loosely
based on modeling the neuronal structure of natural organisms. They are stimulus-response
transfer functions that accept some input and yield some output. They are typically used to
learn an input-output mapping over a set of examples. For example, the input can be
radiographic features from mammograms, with the output being a decision concerning the
likelihood of malignancy.

Neural networks are parallel processing structures consisting of nonlinear processing
elements interconnected by fixed or variable weights. They are quite versatile, for they can
be constructed to generate arbitrarily complex decision regions for stimulus-response pairs.
That is, in general, if given sufficient complexity, there exists a neural network that will
map every input pattern to its appropriate output pattern, as long as the input-output
mapping is not one-to-many (i.e., the same input having a variety of outputs). Neural
networks are therefore well suited for use as detectors and classifiers. The classic pattern
recognition algorithms require assumptions concerning the underlying statistics of the
environment. Neural networks, in contrast, are nonparametric and can effectively address a
broader class of problems [2].



Multi-layer perceptrons, also sometimes described as feed forward networks, are
probably the most common architecture used in supervised learning applications (where
exemplar patterns are available for training). Each computational node sums N weighted
inputs, subtracts a threshold value and passes the result through a logistic (sigmoid)
function. Single-layer perceptrons (i.e., feed forward networks consisting of a single input
node) form decision regions separated by a hyperplane. If the input exemplars from the
given different data classes are linearly separable, a hyperplane can be positioned between
the classes by adjusting the weights and bias terms. If the inputs are not linearly separable,
containing overlapping distributions, a least mean square (LMS) solution is typically
generated to minimize the mean squared error between the calculated output of the network
and the actual desired output. While single perceptrons can generate hyperplane
boundaries, perceptrons with a hidden layer of processing nodes have been proven to be
capable of approximating any measurable function [3], indicating their broad utility for
addressing general pattern recognition problems.

Another versatile neural network architecture is the radial basis function network.
Rather than partitioning the available data using hyperplanes, the radial basis function
network clusters available data, often with the use of approximate Gaussian density
functions. The network comprises an input layer of nodes corresponding to the input
feature dimension, a single hidden layer of nodes with computational properties described
below, and output nodes which perform linear combinations on the hidden nodes. Each
connection between an input node and hidden node carries two variable parameters
corresponding to a mean and standard deviation. Poggio and Girosi [4] proved that linear
combinations of these near-Gaussian density functions can be constructed to approximate
any measurable function. Therefore, like the multi-layer perceptron, radial basis functions
are universal function approximators.

Given a network architecture (i.e., type of network, the number of nodes in each layer,
the connections between the nodes, and so forth), and a training set of input patterns, the
collection of variable weights determines the output of the network to each presented
pattern. The error between the actual output of the network and the desired target output
defines a response surface over an n-dimensional hyperspace, where there are n
parameters (e.g., weights) to be adapted. Multi-layer feed forward perceptrons are the most
commonly selected architecture and training these networks can be accomplished through a
back propagation algorithm which implements a gradient search over the error response
surface for the set of weights that minimizes the sum of the squared error between the
actual and target values.

Although the use of back propagation is common in neural network applications, it is
quite limiting. This procedure is mathematically tractable and provides guaranteed
convergence, but only to a locally optimal solution. Even if the network's topology
provides sufficient complexity to completely solve the given pattern recognition task, the
back propagation method may be incapable of discovering an appropriate set of weights to
accomplish the task. When this occurs, the operator has several options: (1) accept
suboptimal performance, (2) restart the procedure and try again, (3) use ad hoc tricks, such
as adding noise to the exemplars, (4) collect new data and retrain, or (5) add degrees of
freedom to the network by increasing the number of nodes and/or connections.

Only this last approach, adding more degrees of freedom to the network, is guaranteed
to give adequate performance on the training set, provided sufficient nodes and layers are
available. Yet this also presents problems to the designer of the network, for any function
can map any measurable domain to its corresponding range if given sufficient degrees of
freedom. Unfortunately, such overfit functions generally provide very poor performance
during validation on independently acquired data. Such anomalies are commonly




encountered in regression analysis, statistical model building, and system identification.
Assessing the proper trade-off between the goodness-of-fit to the data and the required
degrees of freedom requires information criteria (e.g., Akaike's information criterion,
minimum description length principle, predicted squared error, or others). By relying on
the back propagation method, the designer almost inevitably accepts that the resulting
network will not satisfy the maxim of parsimony, simply because of the nature of the
training procedure itself. The problems of local convergence with the back propagation
algorithm indicate the desirability of training with stochastic optimization methods such as
simulated evolution which can provide convergence to globally optimal solutions.

Evolutionary Computation and Neural Networks

Natural evolution is a population-based optimization process. Simulating this process
on a computer results in stochastic optimization algorithms that can often outperform
classical methods of optimization when applied to difficult real-world problems. There are
currently three main avenues of research in simulated evolution: evolutionary
programming, evolution strategies, and genetic algorithms. The methods are broadly
similar in that each maintains a population of trial solutions, imposes random changes to
those solutions and incorporates the use of selection to determine which solutions to
maintain into future generations and which to remove from the pool of trials. The methods
differ in the types of random changes that are used and the methods for selecting successful
trials. Fogel [5] provides a review of the similarities and differences between these
procedures. The methods have been shown to possess asymptotic global convergence
properties, and in some cases the techniques can be shown to have geometric rates of error
convergence [5], making them attractive for function optimization problems.

The procedures generally proceed as follows. A problem to be solved is cast in the
form of an objective function that describes the worth of alternative solutions. Without loss
of generality, suppose that the task is to find the solution that minimizes the objective
function. A collection (population) of trial solutions are selected at random from some
feasible range across the available parameters. Each solution is scored with respect to the
objective function. The solutions (parents) are then mutated and/or recombined with other
solutions in order to create new trials (offspring). These offspring are also scored with
respect to the objective function and a subset of the parents and offspring are selected to
become parents of the next iteration (generation) based on their relative performance. Those
with superior performance are given a greater chance of being selected than are those of
inferior quality. Fogel [5] details examples of evolutionary algorithms applied to a wide
range of problems, including designing neural networks, and the principal investigator (Dr.
Fogel) has applied these techniques to real problems in pharmaceutical design, factory
scheduling, and freeway onramp metering (e.g., [6,7]).

Designing neural networks through simulated evolution follows an iterative procedure:

1. A specific class of neural networks is selected. The number of input nodes
corresponds to the amount of input data to be analyzed. The number of classes of concern
(i.e., the number of output classification types of interest) determines the number of output
nodes.

2. Exemplar data is selected for training.

3. A population of P complete networks is selected at random. A network incorporates
the number of hidden layers, the number of nodes in each of these layers, the weighted
connections between all nodes in a feed-forward or other design, and all of the bias terms
associated with each node. Reasonable initial bounds must be selected for the size of the
networks, based on the available computer architecture and memory.




4. Each of these "parent” networks is evaluated on the exemplar data. A payoff
function is used to assess the worth of each network. A typical objective function is the
mean-squared error between the target output and the actual output summed over all output
nodes; this technique is often chosen because it simplifies calculations in the back
propagation training algorithm. As evolutionary computation does not rely on similar
calculations, any arbitrary payoff function can be incorporated into the process and can be
made to reflect the operational worth of various correct and incorrect classifications.
Information criteria such as Akaike's information criterion (AIC) [8] or the minimum
description length principle [9] provide mathematical justification for assessing the worth of
each solution, based on its classification error and the required degrees of freedom.

5. "Offspring" are created from these parent networks through random mutation.
Simultaneous variation is applied to the number of layers and nodes, and to the values for
the associated parameters (e.g., weights and biases of a multi-layer perceptron, weights,
biases, means and standard deviations of a radial basis function network). A probability
distribution function is used to determine the likelihood of selecting combinations of these
variations. The probability distribution can be preselected a priori by the operator or can be
made to evolve along with the network, providing for nearly completely autonomous
evolution [5].

6. The offspring networks are scored in a similar manner as their parents.

7. A probabilistic round-robin competition is conducted to determine the relative worth
of each proposed network. Pairs of networks are selected at random. The network with
superior performance is assigned a "win." Competitions are run to a preselected limit.
Those networks with the most wins are selected to become parents for the next generation.
In this manner, solutions that are far superior to their competitors have a corresponding
high probability of being selected. The converse is also true. This function helps prevent
stagnation at local optima by providing a parallel biased random walk.

8. The process iterates by returning to step (5).

Application of Neural Networks for Diagnosis of Breast Cancer from
Mammograms

While neural networks have been successfully applied to difficult engineering
problems, their application to problems in medicine has been limited. More specifically,
with respect to diagnosis of breast cancer, to date, only very recent research effort has been
published in archived literature [10] [11] [12].

The investigation of [10] used 43 preselected features related to density,
microcalcification, parenchymal distortion, skin thickening, correlation with clinical
findings, and so forth. Data was taken from 133 textbook cases in [13]. For each
mammogram, each of the selected features was rated by an experienced mammographer on
a scale of 0-10, and this served as the vector input to a multi-layer perceptron neural
network. The network possessed 10 hidden units in a single layer and a single output unit
which was trained to yield a value of 0.0 for a benign case and 1.0 for a malignancy.
Training was accomplished using back propagation. The results of this preliminary study
and other described experiments indicated the suitability of this approach. By pruning the
feature set to a more reasonable, smaller collection, the neural network was able to
statistically significantly outperform attending radiologists and residents in assessing
patterns of mammographic image features that are associated with benign and malignant
lesions. There was no statistically significant difference between the performance of the
network and the experienced mammographer used to rate each of the image features.

Floyd et al. [11] used back propagation on multi-layer perceptrons to predict breast
cancer from mammographic findings from patients who were scheduled for biopsy. They
used only eight input parameters (mass size, mass margin, asymmetric density,




architectural distortion, calcification number, calcification morphology, calcification
density, and calcification distribution) and each of these was parameterized more
objectively (as opposed to subjectively) than it appears in [10]. There were 260 cases used
for training and testing. There was no held-out training set; all of the exemplars were
processed in a jackknife statistical procedure. After significant training, the results indicated
that if a threshold value of 0.1 were used, 38 out of 168 benign cases and all 92
malignancies would be identified. The authors compared this performance to that of
radiologists and suggested that these results were statistically significantly better than
radiologists at a P < 0.08 level. Although their results do appear fairly impressive with
regard to detecting malignancy, the number of false alarms appears rather high, and the
statistical validity of the hypothesis test carried out can be questioned because the threshold
of 0.1 was chosen after the authors reviewed the data and statistics were compiled on that
same data. Thus the data did not reflect a random sample, but rather a biased sample. New
data would have to be tested at the threshold value of 0.1 to provide a sound statistical
assessment.

Wilding et al. [12] used back propagation on multi-layer perceptrons to assess both
breast and ovarian cancer. Their procedure was similar to both [10] and [11] except that
their input parameters consisted mainly of objective blood specimens and analyses
(maximum of 10 total input parameters) from 104 patients. Unfortunately, Wilding et al.
[12] reported that the neural network was able to "provide little improvement in the
sensitivity of testing compared to the use of [the tumor marker] CA 15-3 only.
Furthermore, it would appear that none of the networks appear to identify any worthwhile
parameters or operating conditions with clinical utility."

As indicated from the above discussion, each of these investigations was limited in
several important regards. First, multi-layer perceptrons may not generalize well on new
data because they are partitioning networks rather than clustering networks. Second, the
back propagation algorithm is well-known to lead to suboptimal convergence at locally
optimal weights sets. Thus, a network trained with back propagation may require many
more hidden nodes to train to a tolerable level of error than are actually required. This
excess in degrees of freedom subsequently hinders the generalization properties of the
network, as it essentially overfits noise in the data. These concerns were specifically
discussed in [11] and [12]. The most effective methods employed in these investigations
for limiting the number of nodes and network parameters were based on sensitivity analysis
and ad hoc pruning. Sensitivity analysis is problematic on nonlinear transfer functions
(such as neural networks) and ad hoc pruning can be largely unproductive. Despite directly
mentioning concerns about overfitting their data, Floyd et al. [11] found that their best
performance occurred when using 177 weights (16 hidden nodes), but they only had 260
samples. Wilding et al. [12] used networks with as few as 38 weights and as many as 132
weights, and despite having 104 samples were still unable to generate satisfactory
performance. Even if the blood statistics that were being used were not particularly relevant
to the classification task at hand, the failure to find suitable networks with more parameters
than data indicates the limitations of the training method and selected neural architecture.

The current investigation has improved upon the performance generated in the efforts of
[10], [11], [12], and other more recent efforts documented in the archive literature (see
Body section). The current year-long study has used both radial basis functions (receptive
fields) and multi-layer perceptrons were used in the classification of mammograms.
Evolutionary computation was used to train the architectures to classify data collected by
Dr. Eugene Wasson (domain expert) in accordance with approved protocols. The results
have demonstrated a statistically significant improvement over the state-of-the-art while
using an order-of-magnitude simpler neural classifier and only 13 input features. These
results indicate potential for advancing the research toward the practical implementation of




image processing filters to serve as inputs to a neural classifier, and eventually toward the
application of a commercially available product that incorporates computer-assisted
detection and classification of suspicious features in film screen or digital mammograms.
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Body

Data were acquired in essentially four phases under the purview of Dr. Eugene C.
Wasson, IT[, M.D. of Maui Memorial Hospital in Wailuku, Maui, Hawaii, who has over
20 years of experience in radiology and breast cancer diagnosis. The surrounding area of
the study provides a small community with a population of approximately 120,000 people
and a single acute care hospital. In 1993, Maui Memorial Hospital had between 50 and 60
positive breast biopsies for carcinoma and had at least five times as many negative biopsies,
all with mammography. The size and composition of the community offers a measure of
control that could not be expected at a hospital that serves a major metropolitan city,
although expanding the investigation to a larger data base from just such hospitals now
appears appropriate. The demographics for the data base reflect the local community of
24% part Hawaiian, 22% Caucasian, 17% Japanese, 17% mixed non-Hawaiian of
miscellaneous races, 16% Filipino, and other cases being at or considerably below 2%
representation. Computer programs were developed and executed on the Natural Selection,
Inc. desktop machines and the SP-2 at the Maui High Performance Computing Center
(facilitated by Edward M. Boughton).

Phase 1

Data were collected by assessing film screen mammograms in light of a set of
radiographic features as determined by the domain expert (Wasson). The features selected
paralleled those of [8] with some important modifications. Under the system of [11],
certain features were described as lying on a continuum when it appeared more useful to
rate these features independently. For example, Floyd et al. [11] rated mass margin with
six categories: (1) no mass (value 0.0), (2) well circumscribed (value 0.2), (3)
microlobulated (value 0.4), (4) obscured (value 0.6), (5) indistinct (value 0.8), and (6) and
spiculated (1.0). In contrast, the current parameterization rated the five categories of masses
(see (2)-(6) in Table 1) in four levels {0,1,2,3} as none, low, medium, and high. The
complete set of radiographic features used appears in Table 1. In addition, the age of the
patient was considered, leading to a total of 13 input features. In the first phase, 96 cases
were analyzed. In all cases (across all phases), the indication of malignant or benign
condition was confirmed by open surgical biopsy of the area of concern with the associated
pathology indicating whether or not a malignant condition had been found. Of the 96 cases,
62 were associated with biopsy-proven malignancy and 34 cases were indicated to be
negative by biopsy.

These data were processed using two forms of neural networks: (1) multilayer
perceptrons and (2) receptive fields (radial basis functions). Each network architecture was
restricted to two hidden nodes, with a linear output node, resulting in 31 adjustable weights
(see Figure 1). Two hidden nodes were chosen as being the most parsimonious choice that
still offered a nonlinear discriminant function. The perceptron network used a sigmoid filter
on each hidden node of f(B) = (1 + exp(-p))-1, where B is the sum of a bias term and the dot
product of the input feature vector and the associated weight vector. The receptive field
network used a Gaussian filter on each hidden node of f(B) = (2x)-0-Sexp(-p2).
Evolutionary programming was used to train the networks in a leave-one-out cross
validation procedure.

Specifically, for each complete cross validation where each sample pattern in turn was
held out for testing then replaced in a series of 96 separate training procedures, a population
of 250 networks of the chosen architecture were selected at random by sampling weight
values from a uniform random variable distributed over [-0.5,0.5]. Each weight set (i.e.
candidate solution) also had an associated self-adaptive mutational vector used to determine
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the random variation imposed during the generation of offspring networks (described
below). Each of the self-adaptive parameters was initialized to a value of 0.01. Each weight
set was evaluated based on how well the network classified the 95 remaining available
training patterns (with one "left out" for testing), where a malignant condition was assigned
a target value of 1.0 and a benign conditions was assigned a target of 0.0. The performance
of each network was determined as the sum of the squared error between the output and the
target value taken over the 95 available patterns.

After evaluating all existing (parent) networks, the 250 weight sets were used to
generate 250 offspring weight sets (one offspring per parent). This was accomplished in a
two-step procedure. For each parent, the self-adaptive parameters were updated as:

o' = G,exp(’cN(O,l) + 'c'N,-(O,I)) 1)

_1 . _ 1
where t o t i
for all n = 33 parameters of the vector o, and N;(0,1) is a standard normal random variable
sampled anew for each parameter. The settings for © and ' have been recommended as
robust in [14]. These updated self-adaptive parameters were then used to generate new
weight values for the offspring according to the rule:

, N(0,1) is a standard normal random variable sampled once

x'i =X; + O.'iC (2)

where C is a standard Cauchy random variable

=—1 _ 00
f(y)—n(1+y2), <y< (3)

(determined as the ratio of two independent standard Gaussian random variables).
Traditional methods in evolutionary programming and evolution strategies have relied on
Gaussian mutation, however recent research in [15], [16], and others, have suggested a
possible benefit to using Cauchy variation because it has a greater probability to generate
longer jumps than the Gaussian. This offers a greater chance of escaping local optima on a
error surface at the expense of poorer fine tuning. Initial observations with both Gaussian
and Cauchy mutations on the existing data appeared to favor the Cauchy distribution,
however a more careful analysis remains for future study. All of the offspring weight sets
were evaluated in the same manner as their parents.

Selection was applied to eliminate half of the total parent and offspring weight sets
based on their observed error performance. Following typical methods in evolutionary
programming [5], a pairwise tournament was conducted where each candidate weight set
was compared against a random sample from the population. The sample size was chosen
as 10 (following [5], a greater sample size indicates more stringent selection pressure). For
each of the 10 comparisons, if the weight set had an associated classification error score
that was lower than the randomly sampled opponent it received a "win." After all weight
sets had participated in this tournament, those that received the greatest number of wins
were retained as parents of the next generation.

This process was iterated for 100 generations, this being believed to be sufficient,

whereupon the best available network as measured by the training performance was used to
classify the held out input feature vector. The result of this classification was recorded (i.e.,
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the output value of the network and the associated target value) and the process was
restarted by replacing the held out vector and removing the next vector in succession until
all 96 patterns had been classified. Each complete series of cross validation was repeated 10
times for both the multilayer perceptron and receptive field networks.

A typical rate of optimization in each training run is shown in Figure 2. The overall
training error often fell as a nearly linear function of the number of generations without
saturation. This suggests that further training time might have been warranted. The
probability of detection, P(D), and false alarm (false positive), P(FA), vary as a function of
the discrimination threshold applied to the output of the networks. As the threshold value is
lower, the network can correctly identify a greater number of cancers, but this comes at the
expense of a higher false alarm rate. Conversely, the false alarm rate can be lowered by
raising the threshold value, but this in turn decreases the sensitivity of the procedure.

The effectiveness of the classification procedures can be assessed using receiver
operating characteristic (ROC) analysis, where the probability of detecting a malignancy is
traded off as a function of the likelihood of a false positive result. Typical ROC curves for
the multilayer perceptron and receptive field networks are shown in Figure 3. The area
under the curve provides a useful measure for comparison.

To compare the effectiveness of the multilayer perceptron architecture with the receptive
field, the area under the ROC curve for each of the 10 trials of cross validation with each
method was estimated. This was accomplished by performing a polynomial regression of at
least third order to the available samples of fraction of false alarms versus fraction of
detections in each ROC curve. Regression models were determined by choosing the lowest
order polynomial that provided (1) an R2 value of at least 0.99, and (2) was non-decreasing
over false alarm rates from zero to one (see Figure 4). The models were integrated over the
range [0,1] to computer the desired areas. The mean area under the ROC curve (and
standard deviation) for the perceptron and receptive field networks, respectively, were
0.787611+0.022346 and 0.739060+0.035574. Under a two-sample mean ¢-test (which
assumes populations of normally distributed values), these data indicate statistically
significant evidence in favor of the perceptron (sigmoid) networks (P < 0.01).

Phase 11

Further data were collected and attention was divided between suspicious features of
mass and microcalcifications. In all, 112 cases of suspicious breast mass (63 biopsy-
proven malignant, 49 negative by biopsy) were examined. A similar method was applied to
classify these data using cross validation. These data were processed using a simple
feedforward ANN restricted to two hidden sigmoid nodes (following the maxim of
parsimony, this being the simplest architecture that can take advantage of the nonlinear
properties of the nodes), with a single linear output node, resulting in 31 adjustable
weights.

The evolution was iterated for 200 generations (as compared with 100 in prior effort —
the rate of error reduction indicated that further training might be useful), whereupon the
best available network as measured by the training performance was used to classify the
held-out input feature vector. The result of this classification was recorded (i.e., the output
value of the network and the associated target value) and the process was restarted by
replacing the held-out vector and removing the next vector in succession until all 111
patterns had been classified.
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Each complete cross validation was repeated 16 times, with different randomly selected
populations of initial weights, to determine the reliability of the overall procedure. A typical
rate of optimization in each training run is shown in Figure 5. The probability of detection,
P(D), and false positive, P(FP), vary with the discrimination threshold applied to the
output of the networks. As the threshold value is lowered, the network can correctly
identify a greater number of cancers at the expense of a higher false positive rate.
Conversely, the false positive rate can be lowered by raising the threshold value, but this in
turn decreases the sensitivity of the procedure.

The effectiveness of the classification procedures can be assessed using receiver
operating characteristic (ROC) analysis, where the probability of detecting a malignancy is
traded off as a function of the likelihood of a false positive. A typical ROC curve for the 16

trials is offered in Figure 6. The mean area A, (determined using polynomial splines) was
0.8982 with a standard error of 5z, = 0.0098. The best network achieved A; = 0.9345.

The average performance of the evolved ANNs in terms of A, is comparable to that of

[10] and [17] which also used mammographic features interpreted by a radiologist. The
ANN in [17], which used 18 input features (both radiographic and clinical) and possessed
10 hidden nodes, yielded a specificity of 0.62 at a sensitivity of 0.95. By comparison,
radiologists attained only a 0.3 specificity on the same data. The evolved networks in the
current study yielded a mean specificity of 0.6187+0.0285 at 0.95 sensitivity. Although
this result is almost identical to the performance offered in [14], the evolved networks were
more parsimonious models (about an order of magnitude fewer degrees of freedom), and
may therefore offer greater generalizability while requiring less computational effort.

Phase III

With additional data collected, comparisons were made between neural (i.e., nonlinear)
and linear classifiers. The 139 cases of suspicious breast mass (79 cases were associated
with a biopsy-proven malignancy, while 60 cases were indicated to be negative by biopsy)
were processed using two input-output models: (1) a simple feedforward ANN restricted to
two hidden sigmoid nodes (following the maxim of parsimony, this being the most simple
architecture that can take advantage of the nonlinear properties of the nodes), with a single
linear output node, resulting in 31 adjustable weights, and (2) a linear classifier (created by
reducing the number of hidden nodes in the above ANN to one). Evolutionary
programming was used to train both the ANNs and the linear discriminant classifier in a
leave-one-out cross validation procedure (the optimum parameters for the linear models
could have been determined by direct calculation, however, using the existing evolutionary
optimization software facilitated the cross validation of these models).

Each complete cross validation was repeated 16 times for the ANNs and 10 times for
the linear classifier, with different randomly selected populations of initial weights, to
determine the reliability of the overall procedure. Typical rates of optimization in each
training run are shown in Figure 7. The probability of detection, P(D), and false positive,
P(FP), vary with the discrimination threshold applied to the output of the models. As the
threshold value is lowered, the models can correctly identify a greater number of cancers,
but this comes at the expense of a higher false positive rate. Conversely, the false positive
rate can be lowered by raising the threshold value, but this in turn decreases the sensitivity
of the procedure.

The effectiveness of the classification procedures can be assessed using receiver
operating characteristic (ROC) analysis, where the probability of detecting a malignancy is
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traded off as a function of the likelihood of a false positive. Typical ROC curves for the 16
trials involving ANNs and 10 trials with linear classifiers is offered in Figure 8. The area

under an ROC curve, often denoted A, provides a useful measure for assessing
performance. The mean area A, (determined using polynomial splines of maximum 9th
order) for the ANNs was 0.9290 with a standard error of s;, = 0.0052. The best network
achieved A, = 0.9657. The mean area A, for the linear classifiers was 0.9187 with a

standard error of 55, = 0.0048. The best linear classifier achieved A, = 0.9397. A t-test

indicated no statistically significant difference (P > 0.1) in performance between the ANNs
and linear classifiers (note that the assumptions for the test may not hold given the sample
sizes).

The average performance of the evolved ANNs and linear classifiers in terms of A is

slightly better than observed in [18] and comparable to that of [10, 17], which also used
mammographic features interpreted by a radiologist. The ANN in [17], which used 18
input features (both radiographic and clinical) and possessed 10 hidden nodes, yielded a
specificity of 0.62 at a sensitivity of 0.95. By comparison, radiologists attained only a 0.3
specificity on the same data. The evolved ANNs and linear classifiers in the current study
yielded mean specificities of 0.7289+0.0346 and 0.6610£0.0413, respectively. Again,
these values do not indicate a statistically significant difference (P > 0.1), however the
performance of the evolved ANNS is statistically significantly better than that offered in
[17] (P < 0.05).

Phase 1V

The available data base of cases was brought to over 200 with over 100 individual
examples of malignant and benign conditions at the beginning of August, 1997. These data
have been processed in a manner similar to that described above. A typical ROC curve from

16 trials with 158 suspicious breast masses appears in Figure 9. The mean area A,
(determined using polynomial splines of maximum 9th order) for the ANNs was 0.9196

with a standard error of 55, = 0.0040. The best network achieved A; = 0.9487. Figure 10

shows the cell point chart of the network output for benign and malignant cases for the 16th
trial. The graph indicates good separation between the two classes. Figure 11 shows the
histograms of network outputs for both classes, and again there appears to be good
separation.

Individual trials were also conducted using the complete set of suspicious breast masses
and microcalcifications. Figure 12 indicates that the area under the ROC is not as great as
when attention in limited only to suspicious masses. This suggests an opportunity to
improve the features used for assessing microcalcifications. Comparisons were conducted
by varying the number of hidden nodes from 1 (a linear system) through 5, to determine if
a nonlinear classifier (i.e., the ANN) provided any benefit to classification. Figure 13
shows that indeed, the use of two hidden nodes increases the overall classification
performance in generalization; however, additional nodes to not lead to improved
performance. This provides some justification for the use of small neural networks to
perform the required classification.
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Conclusions
Statement of Contract Performance

Effort on this one-year grant has completed the statement of work as described in the
contract proposal. In particular, Natural Selection, Inc. has facilitated the collection of an
appropriate data base of assessed mammographic and related features with corresponding
identification of the presence or absence of malignancy (using biopsy proven cases).
Statistical and graphical analysis of these features was performed to identify any obvious
relationships between the features and diagnosis, however none was found. Training and
test sets were created, however, following in line with prior literature, the use of separate
training and test sets was deferred in favor of the use of cross validation techniques.

Evolutionary programs for training multilayer perceptrons and radial basis function
(receptive field) networks were written. Using a squared error criterion, ultimately, over
200 cases were processed and performance was assessed. The results indicate a significant
advance over prior attempts to generate neural classifiers of mammographic data. Natural
Selection, Inc. has also identified a potential organization (Qualia Computing, Inc.) that
could assist in further testing and transition of developed software, and this has led to
submission of two proposals for further research and development. Efforts continue with
regard to identifying the suitability of digital or scanned mammograms (Qualia may be able
to supply these for future efforts). Finally, all relevant efforts have been documented in this
final report.

Significance of Results and Implications

" One criticism of the use of ANNs in medical diagnoses is that they are black box
methods, and in general are not "explainable" [19]. The success of small ANNs in
diagnosing breast cancer, as observed here, offers the promise that suitable explanations
for the network's behavior can be induced, perhaps leading to a greater acceptance by
physicians and ultimately a useful tool.

It would appear that training by simulated evolution or other stochastic methods is key
to developing these parsimonious networks. Under the more common gradient-based
training method of error back propagation, the search for appropriate ANN weight sets can
stagnate at local optima. These can be overcome by adding additional nodes and weights,
. but the resulting networks are no longer as parsimonious as may be possible. Evolutionary
algorithms offer the potential for overcoming multiple optima on the error response surface,
as well as simultaneously adjusting the ANN topology. Further, the evolutionary training
method can be used regardless of the payoffs for correct and incorrect classifications,
which may be important in trading off the costs of sensitivity and specificity.

The current research demonstrates that there is sufficient information in the features
selected to provide reasonable detection and diagnosis of malignant and benign conditions
based on radiographic information and patient age. The following steps would be useful in
furthering this effort toward a practical impact on women's health care:

1. The current sample size of mammograms should be increased continually.

2. Additional radiographic features should be considered, particularly with regard to
assessing microcalcifications.

3. A variety of experts in mammography should take an active role in assessing the chosen
features and providing a baseline for comparison to the performance of evolving neural
classifiers.
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4. Image processing algorithms should be developed to generate feature ratings that are
similar to those offered by qualified experts in mammography when facing the same film
screens.

5. Methods for incorporating additional relevant information from previous patient
screening, patient history, or related individual factors should be developed and tested.

6. Collaborations with other groups performing similar efforts to automate diagnosis of
breast cancer from film screen and/or digital mammograms should be encouraged as there
is a significant potential for evolutionary optimization to provide added value to these
efforts.

Surely these are but some of the possible avenues to pursue. The current effort has
indicated that simple neural classifiers can offer the radiologist a potentially useful tool.
Natural Selection, Inc. looks forward to opportunities to further the utility of this approach.
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Table 1. The features and rating system used for assessing mammograms in the current
study. Assessment was made by the domain expert (Wasson).

1. Mass size: either zero or in mm.
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2), or high (3))
(a) Well circumscribed
(b) Microlobulated
(c) Obscured
(d) Indistinct
(e) Spiculated
3. Architectural distortion: none or distortion
4. Calcification number: none (0), <5 (1), 5-10 (2), or > 10 (3).
5. Calcification morphology: none (0), not suspicious (1), moderately suspicious (2), or
highly suspicious (3)
6. Calcification density: none (0), dense (1), mixed (2), faint (3)
7. Calcification distribution: none (0), scattered (1), intermediate (2), clustered (3)
8. Asymmetric density: either zero or in mm.
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Figure 1. The design used for processing data, both for the multilayer perceptron and
receptive field neural architectures. Input data are weighted in connections to the two
hidden nodes. Each hidden node passes the sum of a bias term (not shown) and the dot
product of the weights and inputs through a nonlinear filter. The filter is f(B8) = 1/( 1+e8)
for the multilayer perceptron, and f(B) = (2m)0-5¢-8* for the receptive field. The output
node is a linear filter which performs the sum of a bias term with the dot product of filtered
hidden nodes and their associated weights. There are 31 weights given 13 inputs.
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Figure 2. A typical rate of optimization in an evolutionary training of the neural networks
on 95 patterns (one held out) over 100 generations. The error of the best member (weight
set) in the population is seen to decrease nearly linearly as function of the number of
generations. With further training, the observed best error would eventually saturate at an
asymptote. The error is taken as the sum of the squared difference between the target value
and the realized output from the network generated as a result of each input pattern.
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Figure 3. Typical ROC curves for the (a) perceptron and (b) receptive field neural
networks. As the probability of a false alarm (i.e., indication of malignancy when none is
present) increases, so does the probability of detection.
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Figure 4. An example of using polynomial regression to estimate the ROC curve based on
the observed pairs of probabilities for false alarm and detection. The equation shown is
P(D) = 4.742 x P(FA) - 8.897 x P(FA)2 + 7.452 x P(FA)3 - 2.295 x P(FA)*. The
goodness-of-fit is R2 = 0.999. Note that the regression equation is constrained to pass
through the origin. Regressions were conducted for each of the 10 complete cross
validation studies with both the perceptron and receptive field networks in order to
determine the area under the approximate ROC curve.
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Figure 5. Typical optimization performance using simulated evolution to train the ANN.
The graph depicts the sum of squared error (SSE) of the best network in the population as a
function of the number of generations. Training was performed over 111 patterns, with one
pattern held out for testing in cross validation. The sufficiency of the number of generations
is indicated as the learning curve approaches an asymptote.
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Figure 6. A typical ROC curve (raw data) generated in one complete cross validation
where each of 112 patterns was classified in turn, based on training over the remaining 111
patterns. Each point represents the probability of detection, P(D), and probability of false
positive, P(FP), that is attained as the threshold for classifying a result as malignant is
increased systematically over [0,1].
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Figure 7. Typical optimization performance using simulated evolution to train (a) the
ANN, (b) the linear classifier (an ANN with only one hidden node). The graphs depict the
mean squared error (MSE) per pattern for the best model in the population as a function of
the number of generations. Training was performed over 138 patterns, with one additional
pattern held out for testing in cross validation. The sufficiency of the number of generations
is indicated as the learning curves approach an asymptote.
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Figure 8. Typical ROC curves (raw data) generated for (a) the ANN and (b) the linear
classifier in one complete cross validation where each of 139 patterns was classified in
turn, based on training over the remaining 138 patterns. Each point represents the
probability of detection, P(D), and probability of false positive, P(FP), that is attained as
the threshold for classifying a result as malignant is increased systematically over [0,1].
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Figure 9. Typical ROC curves (raw data) generated for the ANN classifier in one
complete cross validation where each of 158 patterns was classified in turn, based on
training over the remaining 157 patterns. Each point represents the probability of detection,
P(D), and probability of false positive, P(FP), that is attained as the threshold for
classifying a result as malignant is increased systematically over [0,1]. Using a polynomial
spline, the area under the ROC curve depicted here is estimated at 0.9147, slightly below
the mean of 0.9196 observed across all 16 trials.
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Figure 10. The mean and one standard error bars on the output of the best evolved neural
networks across all 158 classifications in the 16th trial. There is a good separation between
the two output classes, indicating that the neural classifiers are capable of discriminating
between the benign and malignant cases.
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Figure 11. The histograms for the neural output for (a) malignant cases, and (b) benign
cases. The distribution of outputs indicates that the two classes are separated well by the
evolved neural networks. Malignant cases generally induce large output values, while
benign cases generally induce small output values.
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Figure 12. The ROC curve (raw data) generated for the ANN classifier in one complete
cross validation where each of 216 patterns (both suspicious masses and
microcalcifications, 111 malignant) was classified in turn, based on training over the
remaining 215 patterns. Each point represents the probability of detection, P(D), and
probability of false positive, P(FP), that is attained as the threshold for classifying a result
as malignant is increased systematically over [0,1]. Using a polynomial spline, the area
under the ROC curve depicted here is estimated at 0.8464, lower than could be achieved
when focusing solely on suspicious masses.
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Figure 13. Comparing the ROC curves for neural networks with hidden nodes varying in
number from 1 to 5. The network with only a single hidden node is essentially a linear
classifier, whereas the other networks can perform nonlinear discrimination. The curves are
depicted as connected graphs for ease of comparison. The ROC curve for the linear
classifier provides the lowest area under the curve. Including the capability for nonlinear
discrimination (i.e., using two hidden nodes) improves performance; however, including
additional degrees of freedom in the from of more hidden nodes does not improve on that
performance attained by using only two hidden nodes. This provides some justification that
the two-hidden node architecture is a reasonable choice for the available data.
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Abstract

Artificial neural networks are applied to the problem of detecting breast cancer from
radiographic features and patient age. Evolutionary programming is used to train neural
networks based on sigmoid or Gaussian kernel functions. Preliminary results on 96
biopsy-proven cases (62 malignant, 34 benign) indicate that a reasonable probability of
detecting malignancies can be achieved using simple neural architectures. The features
appear to be more amenable to discrimination by partitioning functions than to clustering
functions, although final analysis remains for larger sample sizes.

Introduction

Carcinoma of the breast is second only to lung cancer as a tumor-related cause of death in
women. There are now more than 180,000 new cases and 45,000 deaths annually in the
United States alone. It begins as a focal curable disease, but it is usually not identifiable by
palpation at this stage, and mammography remains the mainstay in effective screening. It
has been estimated that the mortality from breast carcinoma could be decreased by as much
as one-third if all women in the appropriate age groups were regularly screened.

Computer technology offers many potential benefits to the radiologist, including computer-

aided diagnosis. There is currently considerable intra- and inter-observer disagreement or
inconsistencies in mammographic interpretation. This has led to an interest in the possibility
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of utilizing computerized pattern recognition algorithms, such as artificial neural networks
(ANNs), to assist in the decision-making required in the assessment of mammograms.
ANNs have been demonstrated to be useful in many engineering pattern recognition
applications and these techniques hold promise for improving the accuracy of determining
those patients where further assessment and possible biopsy is indicated. Furthermore,
there should also be an eventual cost savings when a reliable automated screening system
can be developed. The successful development of a neural network that is capable of
reliably assessing the potential for the existence of breast carcinoma based on radiographic
features of mammograms would make the radiologist both more efficient and more
effective.

ANNs are models based on the neuronal structure of natural organisms (Haykin, 1994).
They are stimulus-response transfer functions that accept some input and yield some
output. They are typically used to learn an input-output mapping over a set of examples.
For example, as will be described here, the input can be radiographic features from
mammograms, with the output being a decision regarding the likelihood of a malignancy.
Hornik et al. (1989) and Poggio and Girosi (1990) have proved that neural networks with
sigmoid or Gaussian basis functions in a single hidden layer can in principle generate any
measurable mapping, indicating the versatility of these functions.

Given a network architecture (i.e., type of network, the number of nodes in each layer, the
connections between the nodes, and so forth), and a training set of input patterns, the
collection of variable weights determines the output of the network to each presented
pattern. The error between the actual output of the network and the desired target output
defines a response surface over a hyperspace having a dimension equal to the number of
weights. A commonly employed method for finding weight sets in such applications is
error back propagation, which is essentially a gradient method. As such, it is subject to
entrapment in locally optimal solutions, and the resulting weight sets are often unsuitable
for practical applications. Numerical optimization techniques that do not suffer from such
entrapment can be used to advantage in these cases.

Evolutionary algorithms offer one such technique. In these stochastic optimization
methods, a population of candidate solutions is maintained, and random variation (mutation
and/or recombination) and selection are imposed on the population to guide it to appropriate
regions of the hyperspace. The use of random variation to bias the search avoids
entrapment in local optima, and there are several mathematical proofs that variations of
these procedures provide asymptotic global convergence, rather than merely local
convergence (Fogel, 1994; Rudolph, 1994; Bick, 1996). Moreover, there is empirical
evidence that the methods are robust to many pathologies in possible response surfaces,
including multiple minima or maxima, constraints, disjoint feasible regions, and random
perturbations (Schwefel, 1995; Fogel, 1995; Michalewicz, 1996; and others).

There have been many efforts to train neural networks using evolutionary algorithms
(Fogel et al., 1990; Angeline et al., 1994; McDonnell and Waagen, 1994; Yao and Liu,
1996; and many others). This paper describes the results of preliminary efforts to use
evolutionary programming to train simple ANNs to respond to a set of radiographic
features from film screen mammograms, along with the patient's reported age, to make a
determination regarding the presence or absence of a malignant condition. It begins with a
brief review of sclected efforts to use neural networks in breast cancer detection, before
describing the current methods and results.

Background
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Neural networks have been receiving recent attention in medical diagnostics (Brotherton
and Simpson, 1995; Rizki et al., 1995; and others ). With regard to detecting breast cancer,
efforts have been directed at classifying histologic data from cells removed by fine needle
aspiration (Wolberg et al., 1994, 1995) and radiographic features from film screen
mammography (Kocur et al., 1995; and others). Three of these efforts are reviewed here.

The investigation of Wu et al. (1993) used 43 preselected features related to density,
microcalcification, parenchymal distortion, skin thickening, correlation with clinical
findings, and so forth. Data was taken from 133 textbook cases in Tabar and Dean (1985).
For each mammogram, each of the selected features was rated by an experienced
mammographer on a scale of 0-10, and this served as the vector input to a multilayer
perceptron neural network (i.e., feedforward and fully connected). The network possessed
10 hidden units and a single output unit which was trained to yield a value of 0.0 for a
benign case and 1.0 for a malignancy. Training was accomplished using back propagation.
The results of this preliminary study and other described experiments indicated the
suitability of this approach. By pruning the feature set to a more reasonable, smaller
collection, the neural network was able to statistically outperform an attending radiologist
and residents in assessing patterns of mammographic image features that are associated
with benign and malignant lesions. There was no statistically significant difference between
the performance of the network and the experienced mammographer used to rate each of the
image features.

Floyd et al. (1994) used back propagation on multilayer perceptrons to predict breast cancer
from mammographic findings from patients who were scheduled for biopsy. They used
only eight input parameters (mass size, mass margin, asymmetric density, architectural
distortion, calcification number, calcification morphology, calcification density, and
calcification distribution) and each of these was parameterized less subjectively than it
appears in Wu et al. (1993). There were 260 cases used for training and testing. Data was
not separated into complementary training and testing sets; all of the exemplars were
processed using a jackknife statistical procedure. After significant training, the results
indicated that if a threshold value of 0.1 were used (output on a scale from [-1,1]), 38 out
of 168 benign cases and all 92 malignancies would be identified. The authors compared
this performance to that of radiologists and suggested that these results were statistically
significantly better than radiologists at a P < 0.08 level. Although their results do appear
fairly impressive with regard to detecting malignancy, the number of false alarms is
somewhat high (23%), and the statistical validity of the hypothesis test carried out can be
questioned because the threshold of 0.1 was chosen after the authors reviewed the data and
statistics were compiled on those same data. Thus the data did not reflect a random sample,
but rather a biased sample. New data would have to be tested at the threshold value of 0.1
to ensure a sound statistical procedure.

Wilding et al. (1994) used back propagation on multilayer perceptrons to assess both breast
and ovarian cancer. Their procedure was similar to Wu et al. (1993) and Floyd et al.
(1994), except that their input parameters consisted mainly of objective blood specimens
and analyses (maximum of 10 total input parameters) from 104 patients. Unfortunately,
Wilding et al. (1994) reported that the neural network was able to "provide little
improvement on the sensitivity of testing comparing to the use of [the tumor marker] CA
15-3 only. Furthermore, it would appear that none of the networks appear to identify any
worthwhile parameters or operating conditions with clinical utility."

Wu et al. (1993), Floyd et al. (1994), and Wilding et al. (1994) each used back
propagation to determine the weights of their neural networks. But networks trained by
gradient methods may require many more hidden nodes to train to a tolerable level of error
than are actually required because the method may converge at suboptimal weight sets.
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Adding more weights (i.e., degrees of freedom) can help overcome local optima and offer
the possibility for suitable training, but overparameterized networks may not generalize
well on new data. These concerns were specifically discussed in Floyd et al. (1994) and
Wilding et al. (1994). The most effective methods employed in these investigations for
limiting the number of nodes and network parameters were based on sensitivity analysis
and ad hoc pruning. Sensitivity analysis is problematic on nonlinear transfer functions
(such as neural networks) and ad hoc pruning can be largely unproductive. Despite directly
mentioning concerns about overfitting their data, Floyd et al. (1994) found that their best
performance occurred when using 177 weights (16 hidden nodes), but they used only 260
samples. Wilding et al. (1994) used networks with as few as 38 weights and as many as
132 weights, and despite having 104 samples were still unable to generate satisfactory
performance. Even if the blood statistics that were being used were not particularly relevant
to the classification task at hand, the failure to find suitable networks with more parameters
than data indicates the limitations of the training method and suggests alternative methods
for optimizing classification networks, such as evolutionary computation.

Method

Data for the current effort were collected by assessing film screen mammograms in light of
a set of radiographic features as determined by the domain expert (Wasson). The features
selected paralleled those of Floyd et al. (1994) with some important modifications. Under
the system of Floyd et al. (1994), certain features were described as lying on a continuum
when it appeared more useful to rate these features independently. For example, Floyd et
al. (1994) rated mass margin with six categories: (1) no mass (value 0.0), (2) well
circumscribed (value 0.2), (3) microlobulated (value 0.4), (4) obscured (value 0.6), (5)
indistinct (value 0.8), and (6) and spiculated (1.0). In contrast, the current parameterization
rated the five categories of masses (see (2)-(6) in Table 1) in four levels [0,1,2,3] as none,
low, medium, and high. The complete set of radiographic features used appears in Table 1.
In addition, the age of the patient was considered leading to a total of 13 input features.
These features were assessed in 96 cases all of which subsequently had open surgical
biopsy of the area of concern, with the associated pathology indicating whether or not a
malignant condition had been found. In all, 62 cases were associated with a biopsy-proven
malignancy, while 34 cases were indicated to be negative by biopsy (although the
possibility remains that such an indication may be in error).

These data were processed using two forms of neural networks: (1) multilayer perceptrons
and (2) receptive fields. Each network architecture was restricted to two hidden nodes, with
a linear output node, resulting in 31 adjustable weights (see Figure 1). The perceptron
network used a sigmoid filter on each hidden node of f(B) = (1 + exp(-B))-1, where B is the
sum of a bias term and the dot product of the input feature vector and the associated weight
vector. The receptive field network used a Gaussian filter on each hidden node of f(B) =
(2m)-0-5exp(-p2). Evolutionary programming was used to train the networks in a leave-one-
out cross validation procedure.

Specifically, for each complete cross validation where each sample pattern in turn was held
out for testing then replaced in a series of 96 separate training procedures, a population of
250 networks of the chosen architecture were selected at random by sampling weight
values from a uniform random variable distributed over [-0.5,0.5]. Each weight set (i.e.
candidate solution) also had an associated self-adaptive mutational vector used to determine
the random variation imposed during the generation of offspring networks (described
below). Each of the self-adaptive parameters was initialized to a value of 0.01. Each weight
set was evaluated based on how well the network classified the 95 remaining available
training patterns (with one "left out" for testing), where a malignant condition was assigned

42




a target value of 1.0 and a benign conditions was assigned a target of 0.0. The performance
of each network was determined as the sum of the squared error between the output and the
target value taken over the 95 available patterns.

After evaluating all existing (parent) networks, the 250 weight sets were used to generate
250 offspring weight sets (one offspring per parent). This was accomplished in a two-step
procedure. For each parent, the self-adaptive parameters were updated as:

o= O',exp('rN(O,l) + 'c'Ni(O,l)) )
where t = ,/—%Z— ,t = —~/21='/,7 , N(0,1) is a standard normal random variable sampled once

for all n = 33 parameters of the vector o, and N;(0,1) is a standard normal random variable
sampled anew for each parameter. The settings for 1 and 7' have been recommended as
robust in Biick and Schwefel (1993). These updated self-adaptive parameters were then
used to generate new weight values for the offspring according to the rule:

x'i =xi+ G',—C (2)

where C is a standard Cauchy random variable

=—1 _ oo
f(y)_n(1+y2)’ <y< 3)

(determined as the ratio of two independent standard Gaussian random variables).
Traditional methods in evolutionary programming and evolution strategies have relied on
Gaussian mutation, however recent research in Yao and Liu (1996), Saravanan and Fogel
(1997), and others, have suggested a possible benefit to using Cauchy variation because it
has a greater probability to generate longer jumps than the Gaussian. This offers a greater
chance of escaping local optima on a error surface at the expense of poorer fine tuning.
Initial observations with both Gaussian and Cauchy mutations on the existing data appeared
to favor the Cauchy distribution, however a more careful analysis remains for future study.
All of the offspring weight sets were evaluated in the same manner as their parents.

Selection was applied to eliminate half of the total parent and offspring weight sets based
on their observed error performance. Following typical methods in evolutionary
programming (Fogel 1995), a pairwise tournament was conducted where each candidate
weight set was compared against a random sample from the population. The sample size
was chosen as 10 (a greater sample size indicates more stringent selection pressure). For
each of the 10 comparisons, if the weight set had an associated classification error score
that was lower than the randomly sampled opponent it received a "win." After all weight
sets had participated in this tournament, those that received the greatest number of wins
were retained as parents of the next generation.

This process was iterated for 100 generations, whereupon the best available network as
measured by the training performance was used to classify the held out input feature vector.
The result of this classification was recorded (i.e., the output value of the network and the
associated target value) and the process was restarted by replacing the held out vector and
removing the next vector in succession until all 96 patterns had been classified.
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Each complete series of cross validation was repeated 10 times for both the multilayer
perceptron and receptive field networks.

Results

A typical rate of optimization in each training run is shown in Figure 2. The overall training
error often fell as a nearly linear function of the number of generations without saturation.
This suggests that further training time might be warranted.

The probability of detection, P(D), and false alarm, P(FA), vary as a function of the
discrimination threshold applied to the output of the networks. As the threshold value is
lower, the network can correctly identify a greater number of cancers, but this comes at the
expense of a higher false alarm rate. Conversely, the false alarm rate can be lowered by
raising the threshold value, but this in turn decreases the sensitivity of the procedure.

The effectiveness of the classification procedures can be assessed using receiver operating
characteristic (ROC) analysis, where the probability of detecting a malignancy is traded off
as a function of the likelihood of a false positive result. Typical ROC curves for the
multilayer perceptron and receptive field networks are shown in Figure 3. The area under
the curve provides a useful measure for comparison.

To compare the effectiveness of the multilayer perceptron architecture with the receptive
field, the area under the ROC curve for each of the 10 trials of cross validation with each
method was estimated. This was accomplished by performing a polynomial regression of at
least third order to the available samples of fraction of false alarms versus fraction of
detections in each ROC curve. Regression models were determined by choosing the lowest
order polynomial that provided (1) an R2 value of at least 0.99, and (2) was non-decreasing
over false alarm rates from zero to one (see Figure 4). The models were integrated over the
range [0,1] to computer the desired areas. The mean area under the ROC curve (and
standard deviation) for the perceptron and receptive field networks, respectively, were
0.787611+0.022346 and 0.7390601+0.035574. Under a two-sample mean ¢-test (which
assumes populations of normally distributed values), these data indicate statistically
significant evidence in favor of the perceptron (sigmoid) networks (P < 0.01).

Conclusions

Under the assumptions of normally distributed integrals of the ROC curves, the data
suggest that partitioning functions (as offered by sigmoid filters) may be more useful than
clustering functions (as offered by Gaussian filters) for classifying the radiographic
features and patient age as being indicative of a breast malignancy. The longer-term
relevance of this result is yet unclear due at least to (1) the relatively small sample size, and
(2) the constraint that all patterns were derived from mammograms that presented sufficient
radioi;raphic findings to suggest biopsy. Current efforts are directed to obtaining a larger
sample.

Comparisons of the overall performance offered here with the results offered in Floyd et al.
(1994) must be made with caution. The composition of the 260 samples in Floyd et al.
(1994) was 64.6% benign cases, with only 35.4% malignancies. In contrast, the current
data set offered almost the obverse conditions. Further, the demographics between the
studies were different. The data in Floyd et al. (1994) were derived from examinations at
Duke University Medical Center, whereas the data for the current study were collected from
radiology centers on the island of Maui, which can be expected to provide a more diverse
racial mix (24% part-Hawaiian, 22% Caucasian, 17% Japanese, and so forth). This greater
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diversity might be expected to pose a more significant challenge for a classification
algorithm.

In separate analysis, evolutionary programming was used to train a two-hidden node
perceptron over the entire 96 available patterns. Using an output threshold of 0.5 (i.e.,
greater than 0.5 indicates a diagnosis of a malignancy), it was possible, after more than
2000 generations, to find a weight vector that misclassified only 3 of the 96 patterns (i.e., it
was in error on two malignancies and one benign case). Yet when this same architecture
was used in the cross validation trials, this degree of overall performance was not attained.
This suggests that (1) further training in the cross validation trials may be useful, and/or (2)
the current neural architecture overfits the available data, in which case future analysis on a
larger collection of samples should yield a closer correspondence between the error rates
when training on all available data and when training/testing in cross validation. Other
possibilities for improving the discrimination performance of the evolved networks include
imposing small amounts of random noise on the input patterns to increase the possible
generalizability (i.e., essentially creating a larger sample size) and reducing the degrees of
freedom of the neural networks by limiting the input parameters to a subset of the current
assortment.
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Table 1. The features and rating system used for assessing mammograms in the current
study. Assessment was made by the domain expert (Wasson).

1. Mass size: either zero or in mm.
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2), or high 3)
(a) Well circumscribed
(b) Microlobulated
(c) Obscured
(d) Indistinct
(e) Spiculated
3. Architectural distortion: none or distortion
4. Calcification number: none (0), < 5 (1), 5-10 (2), or > 10 (3).
5. Calcification morphology: none (0), not suspicious (1), moderately suspicious (2), or
highly suspicious (3)
6. Calcification density: none (0), dense (1), mixed (2), faint (3)
7. Calcification distribution: none (0), scattered (1), intermediate (2), clustered (3)
8. Asymmetric density: either zero or in mm.
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Figure 1. The design used for processing data, both for the multilayer perceptron and
receptive field neural architectures. Input data are weighted in connections to the two
hidden nodes. Each hidden node passes the sum of a bias term (not shown) and the dot
product of the weights and inputs through a nonlinear filter. The filter is f(B) = 1/(1+e8)
for the multilayer perceptron, and f(B) = (2r)-0-5¢-8? for the receptive field. The output
node is a linear filter which performs the sum of a bias term with the dot product of filtered
hidden nodes and their associated weights. There are 31 weights given 13 inputs.
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Figure 2. A typical rate of optimization in an evolutionary training of the neural networks
on 95 patterns (one held out) over 100 generations. The error of the best member (weight
set) in the population is seen to decrease nearly linearly as function of the number of
generations. With further training, the observed best error would eventually saturate at an
asymptote. The error is taken as the sum of the squared difference between the target value
and the realized output from the network generated as a result of each input pattern.
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Figure 3. Typical ROC curves for the (a) perceptron and (b) receptive field neural
networks. As the probability of a false alarm (i.e., indication of malignancy when none is
present) increases, so does the probability of detection.
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Figure 4. An example of using polynomial regression to estimate the ROC curve based on
the observed pairs of probabilities for false alarm and detection. The equation shown is
P(D) = 4.742 x P(FA) - 8.897 x P(FA)? + 7.452 x P(FA)3 - 2.295 x P(FA)*. The
goodness-of-fit is R2 = 0.999. Note that the regression equation is constrained to pass
through the origin. Regressions were conducted for each of the 10 complete cross
validation studies with both the perceptron and receptive field networks in order to
determine the area under the approximate ROC curve.
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Summary

Artificial intelligence techniques can be used to provide a second opinion in medical

settings. This may improve the sensitivity and specificity of diagnoses, as well as the cost

effectiveness of the physician's effort. In the current study, evolutionary programming is
used to train artificial neural networks to detect breast cancer using radiographic features

and patient age. Results on 112 suspicious breast masses (63 malignant, 49 benign, biopsy

proven) indicate that a significant probability of detecting malignancies can be achieved

using simple neural architectures at the risk of a small percentage of false positives.
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Introduction

Carcinoma of the breast is second only to lung cancer as a tumor-related cause of death
in women. There are now more than 180,000 new cases and 45,000 deaths annually in the
United States alone [1]. It begins as a focal curable disease, but it is usually not identifiable
by palpation at this stage, and mammography remains the mainstay in effective screening.
It has been estimated that the mortality from breast carcinoma could be decreased by as
much as 25 percent if all women in the appropriate age groups were regularly screened [2].

Intra- and inter-observer disagreement and inconsistencies in mammographic
interpretation [3, 4] have led to an interest in using computerized pattern recognition
algorithms, such as artificial neural networks (ANNs) [5], to assist the radiologist in the
assessment of mammograms. The “second opinion” offered by a reliable automated system
may be useful in reducing false-negative diagnoses [6, 7], and other oversights that may
result from poor mammographic image quality, physician fatigue, or alternative sources.
ANNSs hold promise for improving the accuracy of determining those patients where further
assessment and possible biopsy is indicated. Furthermore, a reliable automated screening
system could provide immediate results and lower the logistical costs associated with
handling mammograms. The eventual cost savings could be passed along to the patient,
while simultaneously making the radiologist's time more valuable and improving the
quality of patient care.

ANNs are computational models based on the neuronal structure of natural organisms.
They are stimulus-response transfer functions that map an input space to a specified output
space. They are typically used to generalize such an input-output mapping over a set of
specific examples. For example, as will be described here, the input can be radiographic
features from mammograms, with the output being an indication of the likelihood of a

malignancy.

Given a network architecture (i.e., type of network, the number of nodes in each layer,
the weighted connections between the nodes, and so forth), and a training set of input
patterns, the collection of variable weights determines the output of the network to each
presented pattern. The error between the actual output of the network and the desired target
output defines a potentially multimodal response surface over a multidimensional
hyperspace (the dimension is equal to the number of weights). A commonly employed
method for finding weight sets in such applications is error back propagation, which is
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essentially a gradient method. As such, it is subject to entrapment in locally optimal
solutions, and the resulting weight sets are often unsuitable for practical applications [8].
Numerical optimization techniques that do not suffer from such entrapment can be used to

advantage in these cases.

Evolutionary algorithms offer one such technique. In these stochastic optimization
methods [9], a population of candidate solutions is maintained, and random variation and
selection are imposed on the population to efficiently guide it to appropriate regions of the
hyperspace. The use of random mutation avoids entrapment in local optima, and there are
several mathematical proofs that variations of these procedures provide asymptotic global
convergence, rather than merely local convergence [9, 10]. Moreover, there is empirical
evidence that the methods are robust to many difficulties in possible response surfaces,
including multiple minima or maxima, constraints, disjoint feasible regions, and random
perturbations [11].

Method

For the current investigation, data were collected by assessing film screen
mammograms in light of a set of 12 radiographic features as determined by the domain
expert (Wasson) (Table I). The features selected paralleled those offered in [12], with some
modifications to increase the orthogonality of the features, as well as the inclusion of
patient age. These features were assessed in 112 cases of suspicious breast mass, all of
which were subsequently examined by open surgical biopsy with the associated pathology
indicating whether or not a malignant condition had been found. In all, 63 cases were
associated with a biopsy-proven malignancy, while 49 cases were indicated to be negative
by biopsy.

These data were processed using a simple feedforward ANN restricted to two hidden
sigmoid nodes (following the maxim of parsimony, this being the simplest architecture that
can take advantage of the nonlinear properties of the nodes), with a single linear output
node, resulting in 33 adjustable weights. Evolutionary programming was used to train the
networks in a leave-one-out cross validation procedure. Specifically, for each complete
cross validation where each sample pattern was held out for testing and then replaced in a
series of 112 separate training procedures, a population of 250 networks of the chosen
architecture were initialized at random by sampling weight values from a uniform random
variable distributed over [-0.5,0.5]. Each weight set (i.e. candidate solution) also
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incorporated an associated self-adaptive mutational vector used to determine the random
variation imposed during the generation of offspring networks (described below). Each of
these self-adaptive parameters was initialized to a value of 0.01. Each weight set was
evaluated based on how well the ANN classified the 111 available training patterns, where
a diagnosis of malignancy was assigned a target value of 1.0 and a benign condition was
assigned a target of 0.0. The performance of each network was determined as the sum of
the squared error between the output and the target value taken over the 111 available

patterns.

After evaluating all existing (parent) networks, the 250 weight sets were used to
generate 250 offspring weight sets (one offspring per parent). This was accomplished in a
two-step procedure. For each parent, the self-adaptive parameters were updated as:

G, = G,exp(’tN(O,l) + 'c'N,-(O,l)) )
where © = 7%7 , T = —/—il_ﬁ , N(0,1) is a standard normal random variable sampled once

for all 33 parameters of the vector o, and Ny(0,1) is a standard normal random variable
sampled anew for each parameter. The settings for t and 1’ have been demonstrated to be
fairly robust [9]. These updated self-adaptive parameters were then used to generate new
weight values for the offspring according to the rule:

x',- = x,- + G',-C (2)

where C is a standard Cauchy random variable (determined as the ratio of two independent
standard Gaussian random variables). The Cauchy mutation allows for a significant chance
of generating saltations but still provides a reasonable probability that offspring networks
will reside in proximity to their parents. All of the offspring weight sets were evaluated in
the same manner as their parents.

Selection was applied to eliminate half of the total parent and offspring weight sets
based on their observed error performance. A pairwise tournament was conducted where
each candidate weight set was compared against a random sample from the population. The
sample size was chosen to be 10 (a greater sample size indicates more stringent selection
pressure). For each of the 10 comparisons, if the weight set had an associated classification
error score that was lower than the randomly sampled opponent it received a "win." After
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all weight sets had participated in this tournament, those that received the greatest number
of wins were retained as parents of the next generation. This process affords a probabilistic
selection, not unlike that achieved in annealing methods [13], allowing for the possibility of
climbing up and out of hills and valleys on the error response surface.

This process was iterated for 200 generations, whereupon the best available network as
measured by the training performance was used to classify the held-out input feature
vector. The result of this classification was recorded (i.e., the output value of the network
and the associated target value) and the process was restarted by replacing the held-out
vector and removing the next vector in succession until all 111 patterns had been classified.
Note that each final classification was made using a network that was not trained on the
pattern in question.

Each complete cross validation was repeated 16 times, with different randomly selected
populations of initial weights, to determine the reliability of the overall procedure. A typical
rate of optimization in each training run is shown in Figure 1. The probability of detection,
P(D), and false positive, P(FP), vary with the discrimination threshold applied to the
output of the networks. As the threshold value is lowered, the network can correctly
identify a greater number of cancers, but this comes at the expense of a higher false positive
rate. Conversely, the false positive rate can be lowered by raising the threshold value, but
this in turn decreases the sensitivity of the procedure.

Results and Discussion

The effectiveness of the classification procedures can be assessed using receiver
operating characteristic (ROC) analysis, where the probability of detecting a malignancy is

traded off as a function of the likelihood of a false positive. A typical ROC curve for the 16
trials is offered in Figure 2. The area under the curve, typically denoted A, provides a

useful measure for assessing the performance of the system. The mean area A,
(determined using polynomial splines) was 0.8982 with a standard error of 5z, = 0.0098.

The best network achieved A, = 0.9345.

The average performance of the evolved ANNs in terms of A, is comparable to that of

[14, 15], which also used mammographic features interpreted by a radiologist. The ANN
in [15], which used 18 input features (both radiographic and clinical) and possessed 10
hidden nodes, yielded a specificity of 0.62 at a sensitivity of 0.95. By comparison,
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radiologists attained only a 0.3 specificity on the same data. The evolved networks in the
current study yielded a mean specificity of 0.6187+0.0285 at 0.95 sensitivity. Although
this result is almost identical to the performance offered in [15], the evolved networks are
more parsimonious models (about an order of magnitude fewer degrees of freedom), and
may therefore offer greater generalizability while requiring less computational effort.

One criticism of the use of ANNs in medical diagnoses is that they are black box
methods, and in general are not "explainable" [16]. The success of small ANNs in
diagnosing breast cancer, as observed here, offers the promise that suitable explanations
for the network's behavior can be induced, perhaps leading to a greater acceptance by
physicians and ultimately a useful tool.

It would appear that training by simulated evolution or other stochastic methods is key
to developing these parsimonious networks. Under the more common gradient-based
training method of error back propagation, the search for appropriate ANN weight sets can
stagnate at local optima. These can be overcome by adding additional nodes and weights,
but the resulting networks are no longer as parsimonious as may be possible. Evolutionary
algorithms offer the potential for overcoming multiple optima on the error response surface,
as well as simultaneously adjusting the ANN topology. Further, the evolutionary training
method can be used regardless of the payoffs for correct and incorrect classifications,
which may be important in trading off the costs of sensitivity and specificity.
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Table L The features and rating system used for assessing mammograms in the current
study. Assessment was made by the domain expert (Wasson).

1. Mass size: either zero or in mm.
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2), or high (3))
(a) Well circumscribed
(b) Microlobulated
(c) Obscured
(d) Indistinct
(e) Spiculated
3. Architectural distortion: none or distortion
4. Calcification number: none (0), < 5 (1), 5-10 (2), or > 10 (3).
5. Calcification morphology: none (0), not suspicious (1), moderately suspicious (2), or
highly suspicious (3)
6. Calcification density: none (0), dense (1), mixed (2), faint (3)
7. Calcification distribution: none (0), scattered (1), intermediate (2), clustered (3)
8. Asymmetric density: either zero or in mm.
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Figure Captions

Figure 1. Typical optimization performance using simulated evolution to train the ANN.
The graph depicts the sum of squared error (SSE) of the best network in the population as a
function of the number of generations. Training was performed over 111 patterns, with one
pattern held out for testing in cross validation. The sufficiency of the number of generations
is indicated as the learning curve approaches an asymptote.

Figure 2. A typical ROC curve (raw data) generated in one complete cross validation
where each of 112 patterns was classified in turn, based on training over the remaining 111
patterns. Each point represents the probability of detection, P(D), and probability of false
positive, P(FP), that is attained as the threshold for classifying a result as malignant is
increased systematically over [0,1].
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Summary

Computational methods can be used to provide a second opinion in medical settings and
may improve the sensitivity and specificity of diagnoses. In the current study, evolutionary
programming is used to train artificial neural networks and linear discriminant models to
detect breast cancer in suspicious masses using radiographic features and patient age.
Results on 139 suspicious breast masses (79 malignant, 60 benign, biopsy proven) indicate
that a significant probability of detecting malignancies can be achieved at the risk of a small
percentage of false positives.
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Introduction

Carcinoma of the breast is second only to lung cancer as a tumor-related cause of
death in women. There are now more than 180,000 new cases and 45,000 deaths annually
in the United States alone [1]. Intra- and inter-observer disagreement and inconsistencies in
mammographic interpretation [2, 3] have led to an interest in using computerized pattern
recognition algorithms, such as artificial neural networks (ANNs) [4] and linear
discriminant models (also known as linear classifiers), to assist the radiologist in the
assessment of mammograms. The “second opinion” offered by a reliable automated system
may be useful in reducing false-negative diagnoses [5, 6], and other oversights that may
result from poor mammographic image quality, physician fatigue, or alternative sources. It
may also serve to improve the accuracy of determining those patients for whom further
assessment and possible biopsy is indicated.

This note reports on the use of evolutionary programming (EP) [7] to train ANNs and
linear classifiers to assess 139 suspicious breast masses based on 12 radiographic features
and patient age. Evolutionary optimization is suggested for training ANNs because the
error between the actual output of the network and the desired target output defines a
potentially multimodal response surface over a multidimensional hyperspace (the dimension
is equal to the number of weights). Commonly employed methods for finding weight sets
(e.g., error back propagation) are essentially gradient methods and are subject to
entrapment in locally optimal solutions. The resulting weight sets are often unsuitable for
practical applications. In contrast, evolutionary algorithms avoid entrapment in local
optima, and there are several mathematical proofs that variations of these procedures
provide asymptotic global convergence, rather than merely local convergence [8].
Moreover, there is empirical evidence that the methods are robust to many difficulties in
possible response surfaces, including multiple minima or maxima, constraints, disjoint
feasible regions, and random perturbations [8]. The current research extends previously
reported results [9] in which EP was used to train ANNs for such classification on a
smaller data base. Readers unfamiliar with the use of ANNSs for breast cancer detection are
referred to [5, 6, 9].

Method

Data were collected by assessing film screen mammograms using a set of 12
radiographic features as determined by the domain expert (Wasson) (Table I). The features
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selected paralleled those offered in [10], with some modifications to increase the
orthogonality of the features, as well as the inclusion of patient age. These features were
assessed in 139 cases of suspicious breast mass, all of which were examined by open
surgical biopsy with the associated pathology indicating whether or not a malignant
condition had been found. In all, 79 cases were associated with a biopsy-proven
malignancy, while 60 cases were indicated to be negative by biopsy.

These data were processed using two input-output models: (1) a simple feedforward
ANN restricted to two hidden sigmoid nodes (following the maxim of parsimony, this
being the most simple architecture that can take advantage of the nonlinear properties of the
nodes), with a single linear output node, resulting in 31 adjustable weights, and (2) a linear
classifier (created by reducing the number of hidden nodes in the above ANN to one).
Evolutionary programming was used to train both the ANNs and the linear discriminant
classifier in a leave-one-out cross validation procedurel. Specifically, for each complete
cross validation where each sample pattern was held out for testing and then replaced in a
series of 139 separate training procedures, a population of 250 models of the chosen
architecture (ANN or linear) was initialized at random by sampling weight values from a
uniform random variable distributed over [-0.5,0.5]. Each weight set (i.e. candidate
solution) also incorporated an associated self-adaptive mutational vector used to determine
the random variation imposed during the generation of offspring networks (described
below). Each of these self-adaptive parameters was initialized to a value of 0.01. Each
weight set was evaluated based on how well the model classified the 138 available training
patterns (with the remaining pattern held out for testing), where a diagnosis of malignancy
was assigned a target value of 1.0 and a benign condition was assigned a target of 0.0. The
performance of each network was determined as the sum of the squared error between the
output and the target value taken over the 138 available patterns. Note that this weights all
errors and correct classifications equally. This restriction need not hold in practice.

After evaluating all existing (parent) networks, the 250 weight sets were used to
generate 250 offspring weight sets (one offspring per parent). This was accomplished in a

two-step procedure. For each parent, the self-adaptive parameters were updated as:

', = G,exp(‘cN(O,l) + 'c'N,-(O,l)) )

67




, N(0,1) is a standard normal random variable sampled once

_ 1
T V2w

for all 31 parameters of the vector o, and N;(0,1) is a standard normal random variable

where¢=~[—é_;,'c

sampled anew for each parameter. The settings for © and ' have been demonstrated to be
fairly robust [8]. These updated self-adaptive parameters were then used to generate new
weight values for the offspring according to the rule:

)C'l- - x,- + G'iC (2)

where C is a standard Cauchy random variable (determined as the ratio of two independent
standard Gaussian random variables). The Cauchy mutation allows for a significant chance
of generating saltations but still provides a reasonable probability that offspring networks
will reside in proximity to their parents. All of the offspring weight sets were evaluated in
the same manner as their parents.

Selection was applied to eliminate half of the total parent and offspring weight sets
based on their observed error performance each generation. A pairwise tournament was
conducted where each candidate weight set was compared against a random sample from
the population. The sample size was chosen to be 10 (a greater sample size indicates more
stringent selection pressure). For each of the 10 comparisons, if the weight set had an
associated classification error score that was lower than the randomly sampled opponent it
received a "win." After all weight sets had participated in this tournament, those that
received the greatest number of wins were retained as parents of the next generation. This
process affords a probabilistic selection, not unlike that achieved in annealing methods
[11], allowing for the possibility of climbing up and out of hills and valleys on the error
response surface.

This process was iterated for 200 generations, whereupon the best available network as
measured by the training performance was used to classify the held-out input feature
vector. The result of this classification was recorded (i.e., the output value of the network
and the associated target value) and the process was restarted by replacing the held-out
vector and removing the next vector in succession until all 138 patterns had been classified.
Note that each final classification was made using a model that was not trained on the
pattern in question.
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Each complete cross validation was repeated 16 times for the ANNs and 10 times for
the linear classifier, with different randomly selected populations of initial weights, to
determine the reliability of the overall procedure. Typical rates of optimization in each
training run are shown in Figure 1. The probability of detection, P(D), and false positive,
P(FP), vary with the discrimination threshold applied to the output of the models. As the
threshold value is lowered, the models can correctly identify a greater number of cancers,
but this comes at the expense of a higher false positive rate. Conversely, the false positive
rate can be lowered by raising the threshold value, but this in turn decreases the sensitivity
of the procedure.

Results

The effectiveness of the classification procedures can be assessed using receiver
operating characteristic (ROC) analysis, where the probability of detecting a malignancy is
traded off as a function of the likelihood of a false positive. Typical ROC curves for the 16

trials involving ANNSs and 10 trials with linear classifiers is offered in Figure 2. The area
under an ROC curve, often denoted A, provides a useful measure for assessing

performance. The mean areca A, (determined using polynomial splines of maximum 9th
order) for the ANNs was 0.9290 with a standard error of 5z, = 0.0052. The best network
achieved A, = 0.9657. The mean area A, for the linear classifiers was 0.9187 with a
standard error of s;, = 0.0048. The best linear classifier achieved A, = 0.9397. A rtest
indicated no statistically significant difference (P > 0.1) in performance between the ANNs
and linear classifiers (note that the assumptions for the test may not hold given the sample
sizes)

The average performance of the evolved ANNs and linear classifiers in terms of A, is
slightly better than observed in [9] and comparable to that of [11, 12], which also used
mammographic features interpreted by a radiologist. The ANN in [12], which used 18
input features (both radiographic and clinical) and possessed 10 hidden nodes, yielded a
specificity of 0.62 at a sensitivity of 0.95. By comparison, radiologists attained only a 0.3
specificity on the same data. The evolved ANNSs and linear classifiers in the current study
yielded mean specificities of 0.7289+0.0346 and 0.6610+0.0413, respectively. Again,
these values do not indicate a statistically significant difference (P > 0.1), however the
performance of the evolved ANNS is statistically significantly better than that offered in
[12] (P < 0.05). Caution must be applied in such comparisons because of the unknown

differences underlying the populations from which mammograms were sampled.
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Nevertheless, even if the mean specificity of the evolved classifiers was judged as being
almost identical to the performance offered in [12], the evolved models are more
parsimonious (about an order of magnitude fewer degrees of freedom), and may therefore
offer greater generalizability while requiring less computational effort. Future effort will
involve using the evolved models to classify new data not used in cross validation and
assess whether or not there is any observed loss in performance.
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Footnote

1. The optimum parameters for the linear models could have been determined by direct

calculation, however, using the existing evolutionary optimization software facilitated the
cross validation of these models.
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Table L. The features and rating system used for assessing mammograms in the current
study. Assessment was made by the domain expert (Wasson).

1. Mass size: either zero or in mm.
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2), or high (3))
(a) Well circumscribed
(b) Microlobulated
(c) Obscured
(d) Indistinct
(e) Spiculated
3. Architectural distortion: none or distortion
4. Calcification number: none (0), <5 (1), 5-10 (2), or > 10 (3).
5. Calcification morphology: none (0), not suspicious (1), moderately suspicious (2), or
highly suspicious (3)
6. Calcification density: none (0), dense (1), mixed (2), faint (3)
7. Calcification distribution: none (0), scattered (1), intermediate (2), clustered (3)
8. Asymmetric density: either zero or in mm.

72




Figure Captions

Figure 1. Typical optimization performance using simulated evolution to train (a) the
ANN, (b) the linear classifier (an ANN with only one hidden node). The graphs depict the
mean squared error (MSE) per pattern for the best model in the population as a function of
the number of generations. Training was performed over 138 patterns, with one additional
pattern held out for testing in cross validation. The sufficiency of the number of generations
1s indicated as the learning curves approach an asymptote.

Figure 2. Typical ROC curves (raw data) generated for (a) the ANN and (b) the linear
classifier in one complete cross validation where each of 139 patterns was classified in
turn, based on training over the remaining 138 patterns. Each point represents the
probability of detection, P(D), and probability of false positive, P(FP), that is attained as
the threshold for classifying a result as malignant is increased systematically over [0,1].
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